
NAG C Library Function Document

nag_complex_band_lin_solve (f04cbc)

1 Purpose

nag_complex_band_lin_solve (f04cbc) computes the solution to a complex system of linear equations
AX ¼ B, where A is an n by n band matrix, with kl subdiagonals and ku superdiagonals, and X and B are n
by r matrices. An estimate of the condition number of A and an error bound for the computed solution are
also returned.

2 Specification

#include <nag.h>
#include <nagf04.h>

void nag_complex_band_lin_solve (Nag_OrderType order, Integer n, Integer kl,
Integer ku, Integer nrhs, Complex ab[], Integer pdab, Integer ipiv[],
Complex b[], Integer pdb, double *rcond, double *errbnd, NagError *fail)

3 Description

The LU decomposition with partial pivoting and row interchanges is used to factor A as A ¼ PLU , where
P is a permutation matrix, L is the product of permutation matrices and unit lower triangular matrices with
kl subdiagonals, and U is upper triangular with kl þ kuð Þ superdiagonals. The factored form of A is then
used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia URL: http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag_RowMajor or Nag_ColMajor.

2: n – Integer Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: n � 0.

3: kl – Integer Input

On entry: the number of subdiagonals kl, within the band of A.

Constraint: kl � 0.

f04 – Simultaneous Linear Equations f04cbc

[NP3660/8] f04cbc.1

4: ku – Integer Input

On entry: the number of superdiagonals ku, within the band of A.

Constraint: ku � 0.

5: nrhs – Integer Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: nrhs � 0.

6: ab½dim� – Complex Input/Output

Note: the dimension, dim, of the array ab must be at least max 1; pdab� nð Þ.
On entry: the n by n matrix A. This is stored as a notional two-dimensional array with row
elements or column elements stored contiguously. The storage of elements aij, for i ¼ 1; . . . ; n and
j ¼ max 1; i� klð Þ; . . . ;min n; iþ kuð Þ, depends on the order argument as follows:

if order ¼ Nag_ColMajor, aij is stored as ab½ j� 1ð Þ � pdabþ klþ kuþ i� j�;
if order ¼ Nag_RowMajor, aij is stored as ab½ i� 1ð Þ � pdabþ klþ j� i�.

On exit: ab is overwritten by details of the factorization. The elements, uij, of the upper triangular
band factor U with kl þ ku super-diagonals, and the multipliers, lij, used to form the lower triangular
factor L are stored. The elements uij, for i ¼ 1; . . . ; n and j ¼ i; . . . ;min n; iþ kl þ kuð Þ, and lij, for
i ¼ 1; . . . ; n and j ¼ max 1; i� klð Þ; . . . ; i, are stored using the same storage scheme as described for
aij on entry.

7: pdab – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab � 2� klþ kuþ 1.

8: ipiv½dim� – Integer Output

Note: the dimension, dim, of the array ipiv must be at least max 1; nð Þ.
On exit: if fail.code ¼ NE_NOERROR, NE_SINGULAR or NE_RCOND, the pivot indices that
define the permutation matrix P; at the ith step row i of the matrix was interchanged with row
ipiv½i� 1�. ipiv½i� 1� ¼ i indicates a row interchange was not required.

9: b½dim� – Complex Input/Output

Note: the dimension, dim, of the array b must be at least

max 1; pdb� nrhsð Þ when order ¼ Nag_ColMajor;
max 1; pdb� nð Þ when order ¼ Nag_RowMajor.

If order ¼ Nag_ColMajor, the i; jð Þth element of the matrix B is stored in b½ j� 1ð Þ � pdbþ i� 1�.
If order ¼ Nag_RowMajor, the i; jð Þth element of the matrix B is stored in b½ i� 1ð Þ � pdbþ j� 1�.
On entry: the n by r matrix of right-hand sides B.

On exit: if fail.code ¼ NE_NOERROR or NE_RCOND, the n by r solution matrix X .

10: pdb – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:

if order ¼ Nag_ColMajor, pdb � max 1; nð Þ;
if order ¼ Nag_RowMajor, pdb � max 1; nrhsð Þ.

f04cbc NAG C Library Manual

f04cbc.2 [NP3660/8]

11: rcond – double * Output

On exit: if fail.code ¼ NE_NOERROR, NE_SINGULAR or NE_RCOND, an estimate of the

reciprocal of the condition number of the matrix A, computed as rcond ¼ Ak k1 A�1
�� ��

1

� �
.

12: errbnd – double * Output

On exit: if fail.code ¼ NE_NOERROR or NE_RCOND, an estimate of the forward error bound
for a computed solution x̂, such that x̂� xk k1= xk k1 � errbnd, where x̂ is a column of the computed
solution returned in the array b and x is the corresponding column of the exact solution X . If rcond
is less than machine precision, then errbnd is returned as unity.

13: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, kl ¼ valueh i.
Constraint: kl � 0.

On entry, ku ¼ valueh i.
Constraint: ku � 0.

On entry, n ¼ valueh i.
Constraint: n � 0.

On entry, nrhs ¼ valueh i.
Constraint: nrhs � 0.

On entry, pdab ¼ valueh i.
Constraint: pdab > 0.

On entry, pdb ¼ valueh i.
Constraint: pdb > 0.

NE_INT_2

On entry,pdab ¼ valueh i, kl ¼ valueh i, ku ¼ valueh i.Constraint: pdab � 2� klþ kuþ 1.

On entry,pdb ¼ valueh i, n ¼ valueh i.Constraint: pdb � max 1;nð Þ.
On entry, pdb ¼ valueh i, nrhs ¼ valueh i.
Constraint: pdb � max 1; nrhsð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

NE_RCOND

A solution has been computed, but rcond is less than machine precision so that the matrix A is
numerically singular.

f04 – Simultaneous Linear Equations f04cbc

[NP3660/8] f04cbc.3

NE_SINGULAR

Diagonal element valueh i of the upper triangular factor is zero. The factorization has been
completed, but the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b,

where

Ek k1 ¼ O �ð Þ Ak k1
and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

,

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear equations.

nag_complex_band_lin_solve (f04cbc) uses the approximation Ek k1 ¼ � Ak k1 to estimate errbnd. See
Section 4.4 of Anderson et al. (1999) for further details.

8 Further Comments

The band storage scheme for the array ab stored in Nag_ColMajor is illustrated by the following example,
when n ¼ 5, kl ¼ 2, and ku ¼ 1. Storage of the band matrix A in the array ab:

Band matrix A Band storage in array ab

order ¼ Nag_ColMajor order ¼ Nag_RowMajor

a11 a12
a21 a22 a23
a31 a32 a33 a34

a42 a43 a44 a45
a53 a54 a55

* * * þ þ
* * þ þ þ
* a12 a23 a34 a45
a11 a22 a33 a44 a55
a21 a32 a43 a54 *
a31 a42 a53 * *

* * a11 a12 þ þ
* a21 a22 a23 þ þ
a31 a32 a33 a34 þ *
a42 a43 a44 a45 * *
a53 a54 a55 * * *

Array elements marked � need not be set and are not referenced by the function. Array elements marked +
need not be set, but are defined on exit from the function and contain the elements u13, u14, u24, u25 and
u35. In this example when order ¼ Nag_ColMajor the first referenced element of ab is ab½3� ¼ a11;
while for order ¼ Nag_RowMajor the first referenced element is ab½2� ¼ a11.

In general, elements aij are stored as follows:

if order ¼ Nag_ColMajor, aij are stored in ab½ j� 1ð Þ � pdabþ klþ kuþ i� j�
if order ¼ Nag_RowMajor, aij are stored in ab½ i� 1ð Þ � pdabþ klþ j� i�

where max 1; i� klð Þ � j � min n; iþ kuð Þ.
The total number of floating-point operations required to solve the equations AX ¼ B depends upon the
pivoting required, but if n � kl þ ku then it is approximately bounded by O nkl kl þ kuð Þð Þ for the
factorization and O n 2kl þ kuð Þ; rð Þ for the solution following the factorization. The condition number
estimation typically requires between four and five solves and never more than eleven solves, following the
factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The real analogue of nag_complex_band_lin_solve (f04cbc) is nag_real_band_lin_solve (f04bbc).

f04cbc NAG C Library Manual

f04cbc.4 [NP3660/8]

9 Example

To solve the equations

AX ¼ B,

where A is the band matrix

A ¼

�1:65þ 2:26i �2:05� 0:85i 0:97� 2:84i 0
0:00þ 6:30i �1:48� 1:75i �3:99þ 4:01i 0:59� 0:48i

0 �0:77þ 2:83i �1:06þ 1:94i 3:33� 1:04i
0 0 4:48� 1:09i �0:46� 1:72i

0
BB@

1
CCA

and

B ¼

�1:06þ 21:50i 12:85þ 2:84i
�22:72� 53:90i �70:22þ 21:57i
28:24� 38:60i �20:73� 1:23i

�34:56þ 16:73i 26:01þ 31:97i

0
BB@

1
CCA.

An estimate of the condition number of A and an approximate error bound for the computed solutions are
also printed.

9.1 Program Text

/* nag_complex_band_lin_solve (f04cbc) Example Program.
*
* Copyright 2004 Numerical Algorithms Group.
*
* Mark 8, 2004.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf04.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
double errbnd, rcond;
Integer exit_status, i, j, kl, ku, n, nrhs, pdab, pdb;

/* Arrays */
char *clabs=0, *rlabs=0;
Complex *ab=0, *b=0;
Integer *ipiv=0;

/* Nag types */
NagError fail;
Nag_OrderType order;

#ifdef NAG_COLUMN_MAJOR
#define AB(I,J) ab[(J-1)*pdab + kl + ku + I - J]
#define B(I,J) b[(J-1)*pdb + I - 1]

order = Nag_ColMajor;
#else
#define AB(I,J) ab[(I-1)*pdab + kl + J - I]
#define B(I,J) b[(I-1)*pdb + J - 1]

order = Nag_RowMajor;
#endif

exit_status = 0;
INIT_FAIL(fail);

Vprintf("nag_complex_band_lin_solve (f04cbc)"

f04 – Simultaneous Linear Equations f04cbc

[NP3660/8] f04cbc.5

" Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");

Vscanf("%ld%ld%ld%ld%*[^\n] ",
&n, &kl, &ku, &nrhs);

if (n>0 && kl>0 && ku>0 && nrhs>0)
{

/* Allocate memory */
if (!(clabs = NAG_ALLOC(2, char)) ||

!(rlabs = NAG_ALLOC(2, char)) ||
!(ab = NAG_ALLOC((2*kl+ku+1)*n, Complex)) ||
!(b = NAG_ALLOC(n*nrhs, Complex)) ||
!(ipiv = NAG_ALLOC(n, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
pdab = 2*kl+ku+1;

#ifdef NAG_COLUMN_MAJOR
pdb = n;

#else
pdb = nrhs;

#endif
}

else
{

Vprintf("%s\n", "One or more of NMAX, KLMAX, KUMAX or NRHSMX is"
" too small");

exit_status = 1;
return exit_status;

}

/* Read A and B from data file */
for (i = 1; i <= n; ++i)

{
for (j = MAX(i - kl,1); j <= MIN(i + ku,n); ++j)

{
Vscanf(" (%lf , %lf)", &AB(i,j).re, &AB(i,j).im);

}
}

Vscanf("%*[^\n] ");

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= nrhs; ++j)
{

Vscanf(" (%lf , %lf)", &B(i,j).re, &B(i,j).im);
}

}
Vscanf("%*[^\n] ");

/* Solve the equations AX = B for X */
/* nag_complex_band_lin_solve (f04cbc).
* Computes the solution and error-bound to a complex banded
* system of linear equations
*/

nag_complex_band_lin_solve(order, n, kl, ku, nrhs, ab, pdab, ipiv, b,
pdb, &rcond, &errbnd, &fail);

if (fail.code == NE_NOERROR)
{

/* Print solution, estimate of condition number and approximate */
/* error bound */
/* nag_gen_complx_mat_print_comp (x04dbc).
* Print complex general matrix (comprehensive)
*/

nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix,

f04cbc NAG C Library Manual

f04cbc.6 [NP3660/8]

Nag_NonUnitDiag, n, nrhs, b, pdb,
Nag_BracketForm, "%7.4f",
"Solution", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0,
&fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

Vprintf("\n%s\n%4s%9.1e\n\n", "Estimate of condition number", "",
1.0/rcond);

Vprintf("\n%s\n%4s%9.1e\n\n",
"Estimate of error bound for computed solutions", "",
errbnd);

}
if (fail.code == NE_RCOND)

{

/* Matrix A is numerically singular. Print estimate of */
/* reciprocal of condition number and solution */
Vprintf("\n%s\n%4s%9.1e\n\n\n",

"Estimate of reciprocal of condition number", "", rcond);
/* nag_gen_complx_mat_print_comp (x04dbc), see above. */
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix,

Nag_NonUnitDiag, n, nrhs, b, pdb,
Nag_BracketForm, "%7.4f",
"Solution", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0,
&fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
}

if (fail.code == NE_SINGULAR)
{

/* The upper triangular matrix U is exactly singular. Print */
/* details of factorization */

Vprintf("\n");
/* nag_band_complx_mat_print_comp (x04dfc).
* Print complex packed banded matrix (comprehensive)
*/

nag_band_complx_mat_print_comp(order, n, n, kl, kl + ku, ab, pdab,
Nag_BracketForm, "%7.4f",
"Details of factorization",
Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0,
&fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_band_complx_mat_print_comp (x04dfc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Print pivot indices */

Vprintf("\n%s\n", "Pivot indices");
for (i = 1; i <= n; ++i)

{
Vprintf("%11ld%s", ipiv[i - 1],

i%7 == 0 || i == n ?"\n":" ");

f04 – Simultaneous Linear Equations f04cbc

[NP3660/8] f04cbc.7

}
Vprintf("\n");

}
END:
if (clabs) NAG_FREE(clabs);
if (rlabs) NAG_FREE(rlabs);
if (ab) NAG_FREE(ab);
if (b) NAG_FREE(b);
if (ipiv) NAG_FREE(ipiv);

return exit_status;
}

9.2 Program Data

nag_complex_band_lin_solve (f04cbc) Example Program Data

4 1 2 2 :N, KL, KU and NRHS

(-1.65, 2.26) (-2.05, -0.85) (0.97, -2.84)
(0.00, 6.30) (-1.48, -1.75) (-3.99, 4.01) (0.59, -0.48)

(-0.77, 2.83) (-1.06, 1.94) (3.33, -1.04)
(4.48, -1.09) (-0.46, -1.72) :End matrix A

(-1.06, 21.50) (12.85, 2.84)
(-22.72,-53.90) (-70.22, 21.57)
(28.24,-38.60) (-20.73, -1.23)
(-34.56, 16.73) (26.01, 31.97) :End matrix B

9.3 Program Results

nag_complex_band_lin_solve (f04cbc) Example Program Results

Solution

1 2
1 (-3.0000, 2.0000) (1.0000, 6.0000)
2 (1.0000,-7.0000) (-7.0000,-4.0000)
3 (-5.0000, 4.0000) (3.0000, 5.0000)
4 (6.0000,-8.0000) (-8.0000, 2.0000)

Estimate of condition number
1.0e+02

Estimate of error bound for computed solutions
1.2e-14

f04cbc NAG C Library Manual

f04cbc.8 (last) [NP3660/8]

	f04cbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	n
	kl
	ku
	nrhs
	ab
	pdab
	ipiv
	b
	pdb
	rcond
	errbnd
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_RCOND
	NE_SINGULAR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

