f04 — Simultaneous Linear Equations f04cbc

NAG C Library Function Document

nag complex band lin_solve (f04cbc)

1 Purpose

nag_complex_band lin_solve (f04cbc) computes the solution to a complex system of linear equations
AX = B, where A4 is an n by n band matrix, with k; subdiagonals and k&, superdiagonals, and X and B are n
by » matrices. An estimate of the condition number of 4 and an error bound for the computed solution are
also returned.

2 Specification

#include <nag.h>
#include <nagf04.h>

void nag_complex_band_lin_solve (Nag_OrderType order, Integer n, Integer ki,
Integer ku, Integer nrhs, Complex ab[], Integer pdab, Integer ipiv[],
Complex b[], Integer pdb, double *rcond, double *errbnd, NagError x*fail)

3 Description

The LU decomposition with partial pivoting and row interchanges is used to factor 4 as A = PLU, where
P is a permutation matrix, L is the product of permutation matrices and unit lower triangular matrices with
k; subdiagonals, and U is upper triangular with (k; + k,) superdiagonals. The factored form of 4 is then
used to solve the system of equations AX = B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia URL: http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

S Arguments
1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint. order = Nag_ RowMajor or Nag ColMajor.

2: n — Integer Input
On entry: the number of linear equations #, i.e., the order of the matrix 4.

Constraint: n > 0.

3: kl — Integer Input
On entry: the number of subdiagonals k;, within the band of 4.
Constraint: kl > 0.

[NP3660/8] f0dche.

f04cbe NAG C Library Manual

4: ku — Integer Input
On entry: the number of superdiagonals k,, within the band of 4.
Constraint: ku > 0.

5: nrhs — Integer Input
On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: nrhs > 0.

6: ab[dim] — Complex Input/Output
Note: the dimension, dim, of the array ab must be at least max(1, pdab x n).

On entry: the n by n matrix 4. This is stored as a notional two-dimensional array with row
elements or column elements stored contiguously. The storage of elements a;;, for i =1,...,n and
j=max(1,i—k;),...,min(n,i + k,), depends on the order argument as follows:

if order = Nag_ColMajor, a; is stored as ab[(j — 1) x pdab + kl + ku + i — /];
if order = Nag_RowMajor, a; is stored as ab[(i — 1) x pdab + kl +; — i].

On exit: ab is overwritten by details of the factorization. The elements, u
band factor U with k; + k, super-diagonals, and the multipliers, /

j» of the upper triangular

j» used to form the lower triangular

factor L are stored. The elements uy;, for i =1,...,n and j =i,...,min(n,i+ k; + k,), and I, for
i=1,...,nandj =max(l,i —k;),...,i, are stored using the same storage scheme as described for
a; on entry.

7: pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix 4 in the array ab.

Constraint: pdab > 2 x kl 4 ku + 1.

8: ipiv[dim] — Integer Output
Note: the dimension, dim, of the array ipiv must be at least max(1,n).

On exit: if fail.code = NE_NOERROR, NE_SINGULAR or NE_RCOND, the pivot indices that
define the permutation matrix P; at the ith step row i of the matrix was interchanged with row
ipiv[i — 1]. ipiv[i — 1] =/ indicates a row interchange was not required.

o: b[dim] — Complex Input/Output
Note: the dimension, dim, of the array b must be at least

max(1, pdb x nrhs) when order = Nag_ColMajor;
max(1,pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i,j)th element of the matrix B is stored in b[(j — 1) x pdb + i — 1].
If order = Nag_RowMajor, the (i,j)th element of the matrix B is stored in b[(i — 1) x pdb +; — 1].
On entry: the n by r matrix of right-hand sides B.

On exit: if fail.code = NE_NOERROR or NE_RCOND, the n by r solution matrix X.

10: pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.
Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).

f04che.2 [NP3660/8]

f04 — Simultaneous Linear Equations f04cbe

11: rcond — double * Output
On exit: if fail.code = NE_NOERROR, NE_SINGULAR or NE_RCOND, an estimate of the

reciprocal of the condition number of the matrix 4, computed as rcond = (||AH1HA71 ||1)

12: errbnd — double * Output
On exit: if fail.code = NE_NOERROR or NE_RCOND, an estimate of the forward error bound

for a computed solution X, such that ||x — x||,/||x[|; < errbnd, where % is a column of the computed
solution returned in the array b and x is the corresponding column of the exact solution X. If rcond
is less than machine precision, then errbnd is returned as unity.

13: fail — NagError * Input/Output
The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, kl = (value).
Constraint: kI > 0.

On entry, ku = (value).
Constraint: ku > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

NE_INT 2
On entry,pdab = (value), kl = (value), ku = (value).Constraint: pdab > 2 x kl + ku + 1.
On entry,pdb = (value), n = (value).Constraint: pdb > max(1,n).
On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

NE_RCOND

A solution has been computed, but rcond is less than machine precision so that the matrix 4 is
numerically singular.

[NP3660/8] f04che.3

f04cbe NAG C Library Manual

NE_SINGULAR

Diagonal element (value) of the upper triangular factor is zero. The factorization has been
completed, but the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, X, satisfies an equation of the form

(A+E)x=0b,
where
IE]l, = O(e)| 4],

and ¢ is the machine precision. An approximate error bound for the computed solution is given by

X—x E

B <
where k(4) = HA_1 ||, 114l the condition number of 4 with respect to the solution of the linear equations.
nag_complex_band_lin_solve (f04cbc) uses the approximation ||E||, = €||4||, to estimate errbnd. See

Section 4.4 of Anderson et al. (1999) for further details.

8 Further Comments

The band storage scheme for the array ab stored in Nag_ColMajor is illustrated by the following example,
when n =35, k; =2, and k, = 1. Storage of the band matrix 4 in the array ab:

Band matrix 4 Band storage in array ab

order = Nag ColMajor order = Nag RowMajor

ap app * * * + + * * ag [251) + +

a1 axp a3 * * + 4+ + *oay ay apy + +

dz) dzpy 43z dzy * iy dpz Q3zgq dys ay axp ax ay +
Qg d43 d4q Q45 app dypy dzz Qgq ilss Qg A43 Q44 245 : :

ds3 ds4 dss ap; Azp Q43 Asy ds3 ds4 dss

az; Qg d4s3

Array elements marked * need not be set and are not referenced by the function. Array elements marked +
need not be set, but are defined on exit from the function and contain the elements u;3, w14, Uy, Ups and
uzs. In this example when order = Nag_ColMajor the first referenced element of ab is ab[3] = a;;;
while for order = Nag_RowMajor the first referenced element is ab[2] = a;;.

In general, elements a; are stored as follows:

if order = Nag_ColMajor, a; are stored in ab[(j — 1) x pdab + kI + ku +i — /]
if order = Nag_RowMajor, a; are stored in ab[(i — 1) x pdab + kl + j —]
where max(1,7 —kl) <; < min(n, i + Ku).

The total number of floating-point operations required to solve the equations AX = B depends upon the
pivoting required, but if n > k; + k, then it is approximately bounded by O(nk,(k; +k,)) for the
factorization and O(n(2k; + k,),r) for the solution following the factorization. The condition number
estimation typically requires between four and five solves and never more than eleven solves, following the
factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The real analogue of nag _complex band lin_solve (f04cbc) is nag_real band lin_solve (f04bbc).

f04cbe.4 [NP3660/8]

f04 — Simultaneous Linear Equations

f04cbce

9 Example
To solve the equations
AX =B,
where A is the band matrix
—1.65+226i —2.05-0.85 097 —2.84i 0
4 0.00 +6.30i —1.48 —1.75i —3.99+4.01i 0.59 —0.48;
N 0 —0.77+2.83i —-1.06+194i 3.33 —1.04i
0 0 448—-1.09i —0.46—1.72i
and
—1.06 4+ 21.50i 12.85 4+ 2.84i
B —22.72 —53.90i —70.22 4+21.57i
a 28.24 —38.60i —20.73 — 1.23i

—34.56 + 16.73i

26.01 +31.97i

An estimate of the condition number of 4 and an approximate error bound for the computed solutions are
also printed.

9.1
/*

*

Program Text

nag_complex_band_lin_solve (f04cbc) Example Program.
* Copyright 2004 Numerical Algorithms Group.

*
* Mark 8,
*/

2004.

<stdio.h>
<nag.h>
<nag_stdlib.h>
<nagf04.h>
<nagx04.h>

#include
#include
#include
#include
#include

int main(void)

{

/* Scalars */

double errbnd, rcond;
Integer exit_status, i, Jj, kl, ku, n, nrhs, pdab, pdb;
/* Arrays */

char #*clabs=0, #*rlabs=0;

Complex #*ab=0, *b=0;

Integer *ipiv=0;

/* Nag types */
NagError fail;
Nag_OrderType order;

#ifdef NAG_COLUMN_MAJOR
#define AB(I,J) ab[(J-1)*pdab + k1 + ku + I - J]
#define B(I,J) b[(J-1)*pdb + I - 1]
order = Nag_ColMajor;
#else
#define AB(I,J) ab[(I-1)*pdab + k1 + J - I]
#define B(I,J) b[(I-1)*pdb + J - 1]
order = Nag_RowMajor;
#endif

exit_status = 0;
INIT_FAIL(fail);

Vprintf ("nag_complex_band_lin_solve (f04cbc)"

[NP3660/8] f04chce.5

f04cbce

" Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*x["\n] ");

Vscanf ("%$1d%1d%1d%s1dsx["\n] ",
&n, &kl, &ku, &nrhs);
if (n>0 && k1>0 && ku>0 && nrhs>0)
{
/* Allocate memory */
if (!(clabs = NAG_ALLOC(2, char)) ||
rlabs = NAG_ALLOC(2, char)) ||
ab = NAG_ALLOC((2*kl+ku+l)#*n, Complex)) ||
= NAG_ALLOC (n*nrhs, Complex)) ||

'(
H(
! (b
! (ipiv = NAG_ALLOC(n, Integer)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

pdab = 2*xkl+ku+l;
#ifdef NAG_COLUMN_MAJOR

pdb = n;
#else
pdb = nrhs;
#endif
¥
else
{
Vprintf ("%s\n", "One or more of NMAX, KLMAX, KUMAX or NRHSMX is"

" too small");
exit_status = 1;
return exit_status;

}
/* Read A and B from data file =*/
for (i = 1; 1 <= n; ++1)
{
for (j = MAX(i - k1,1); j <= MIN(i + ku,n); ++73)
{
Vscanf (" (%1f , %1f)", &AB(i,j).re, &AB(i,j).im);
}
}
Vscanf ([*\n] ");

for (i = 1; i <= n; ++1i)

{
for (j = 1; j <= nrhs; ++3j)
{
Vscanf (" (%1f , %1f)", &B(i,]j).re, &B(i,]j).im);
¥
}
Vscanf ([*\n] ");

/* Solve the equations AX = B for X x/
/* nag_complex_band_lin_solve (£f04cbc).

* Computes the solution and error-bound to a complex banded

* system of linear equations

*/

nag_complex_band_lin_solve(order, n, kl, ku, nrhs, ab, pdab,

pdb, &rcond, &errbnd, &fail);
if (fail.code == NE_NOERROR)
{

NAG C Library Manual

/* Print solution, estimate of condition number and approximate =*/

/* error bound */

/* nag_gen_complx_mat_print_comp (x04dbc).
* Print complex general matrix (comprehensive)
*/

nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix,

f04cbc.6

[NP3660/8]

f04 — Simultaneous Linear Equations

Nag_NonUnitDiag,
Nag_BracketForm,
"Solution", Nag_IntegerLabels,
Nag_IntegerLabels,

f04cbce

n, nrhs, b, pdb,
"g7.4f",
0,

0, 80, 0, O,

&fail);

Vprintf ("Error from nag_gen_complx_mat_print_comp

if (fail.code != NE_NOERROR)
{
fail.message);
exit_status = 1;
goto END;
b

Vprintf ("\n%s\n%4s%9.le\n\n",
1.0/rcond) ;
Vprintf ("\n%s\n%4s%9.le\n\n",

"Estimate of error bound for computed solutions",

errbnd) ;
}
if (fail.code
{

NE_RCOND)

/* Matrix A is numerically singular.

"Estimate of condition number",

(x04dbc) .\n%s\n",

nn
r

Print estimate of *x/

/* reciprocal of condition number and solution =*/

Vprintf ("\n%s\n%4s%9.le\n\n\n",

"Estimate of reciprocal of condition number",
/* nag_gen_complx_mat_print_comp

nn
4

*/

rcond) ;

(x04dbc), see above.

nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix,

Nag_NonUnitDiag,
Nag_BracketForm,

n, nrhs, b, pdb,
"%7.4£",

"Solution", Nag_IntegerLabels, O,
Nag_IntegerLabels, 0, 80, 0, O,
&fail) ;
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
b
}
if (fail.code == NE_SINGULAR)
{
/* The upper triangular matrix U is exactly singular. Print */
/* details of factorization */
Vprintf ("\n") ;
/* nag_band_complx_mat_print_comp (x04dfc).
* Print complex packed banded matrix (comprehensive)
*/
nag_band_complx_mat_print_comp(order, n, n, kl, k1 + ku, ab, pdab,
Nag_BracketForm, "%7.4f",
"Details of factorization",
Nag_IntegerLabels, O,
Nag_IntegerLabels, 0, 80, 0, O,
&fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_band_complx_mat_print_comp (x04dfc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
¥
/* Print pivot indices */
Vprintf ("\n%s\n", "Pivot indices");
for (i = 1; i <= n; ++1)
{
Vprintf ("%111d%s", ipiv[i - 11,
i%$7 == 0 || 1 == n 2"\n":" ");
[NP3660/8] fodche.7

f04cbe NAG C Library Manual

}
Vprintf ("\n") ;

}
END:
if (clabs) NAG_FREE (clabs) ;
if (rlabs) NAG_FREE(rlabs) ;
if (ab) NAG_FREE(ab) ;
if (b) NAG_FREE(b);
if (ipiv) NAG_FREE (ipiv) ;

return exit_status;

9.2 Program Data

nag_complex_band_lin_solve (f04cbc) Example Program Data
4 1 2 2 :N, KL, KU and NRHS

(-1.65, 2.26) (-2.05, -0.85) (0.97, -2.84)
(0.00, 6.30) (-1.48, -1.75) (=-3.99, 4.01) (0.59, -0.48)
(-0.77, 2.83) (-1.06, 1.94) (3.33, -1.04)
(4.48, -1.09) (-0.46, -1.72) :End matrix A

(-1.06, 21.50
(-22.72,-53.90
(28.24,-38.60
(-34.56, 16.73

(12.85, 2.84
(-70.22, 21.57
(-20.73, -1.23
(

26.01, 31.97 :End matrix B

9.3 Program Results

nag_complex_band lin_solve (f04cbc) Example Program Results

Solution

1
(-3.0000, 2.0000)
(1.0000,-7.0000)
(-5.0000, 4.0000)
(6.0000,-8.0000)

2
1.0000, 6.0000)
7.0000,-4.0000)
3.0000, 5.0000)
8.0000, 2.0000)

B w N

(
(_
(
(

Estimate of condition number
1.0e+02

Estimate of error bound for computed solutions
1.2e-14

f04cbe.8 (last) [NP3660/8]

	f04cbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	n
	kl
	ku
	nrhs
	ab
	pdab
	ipiv
	b
	pdb
	rcond
	errbnd
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_RCOND
	NE_SINGULAR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

